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Concentration in high-dimensional statistics

High-dimensional statistics is about models where one has more parameters p than observa-
tions n. The theory contains a high concentration of challenging mathematical issues. We
will encounter convex analysis, random matrix theory, approximation theory and, last but
not least, concentration of measure. We illustrate this for linear regression and also briefly
discuss other models.

Suppose one observes an n-dimensional Gaussian vector Y of the form

Y = f 0 + ε,

with f 0 an unknown mean vector and ε standard Gaussian noise. Consider a given n × p
design matrix X, with p > n, and the estimator

β̂ := arg min
β∈Rp

{
‖Y −Xβ‖22︸ ︷︷ ︸
least squares loss

+ 2λ‖β‖1︸ ︷︷ ︸
regularization penalty

}

where λ > 0 is a given tuning parameter. This estimator, called “Lasso” (Tibshirani (1996)),
is extremely popular in high-dimensional regression. The penalty β 7→ 2λ‖β‖1 regularizes
the problem: it ensures that certain entries in the vector β̂ are set to zero.

The theoretical properties of the Lasso are well understood. We will present some recent
further refinements of this theory.

Consider the minimizer of the noiseless problem

β∗ := arg min
β∈Rp

{
‖f 0 −Xβ‖22 + 2λ‖β‖1

}
.

Let f̂ := Xβ̂ and f ∗ := Xβ∗.
We are interested in the behaviour of the “approximation error” ‖f ∗ − f 0‖2 and “esti-

mation error” ‖f̂ − f ∗‖2. Note that the approximation error is a deterministic quantity that
can be studied using approximation theory. Clearly, if the tuning parameter λ is small this
error will be small too. The estimation error is random and is typically large for small λ.

To deal with the estimation error one can apply concentration of measure. It is shown
in van de Geer and Wainwright (2016) and Bellec and Tsybakov (2016) that ε 7→ ‖f̂ − f ∗‖2
is Lipschitz. Hence by concentration of measure, ‖f̂ − f ∗‖2 concentrates around its median,
m∗ say. A bound for the median m∗ is as follows. The subdifferential of β 7→ ‖β‖1 is equal
to

∂‖β‖1 := {z ∈ Rp : ‖z‖∞ ≤ 1, βT z = ‖β‖1}.

The vector β∗ satisfies the Karush-Kuhn-Tucker conditions

XT (Xβ∗ − f 0) + λz∗ = 0



where z∗ ∈ ∂‖β∗‖1. For any S ⊂ {1, . . . , p} let z∗−S be the vector z∗ restricted to the
complement of the set S.

Theorem Let S ⊂ {1, . . . , p} be a subset of the variables such that ‖z∗−S‖∞ < 1. Let

λ(1− ‖z∗−S‖∞) ≥
√

2n log(4p) +
√

2n log(2). Then have

m∗ ≤
√
|S|+

√
2 log(2).

The flavour of this result is that the squared estimation error is roughly the number of
variables (columns of X) needed to approximate the signal f 0. In other words, the estimator
adapts to the sparsity of the approximation f ∗ of f 0.

Moreover, under certain conditions on the design X one can show that
√
|S| is of small

order ‖f ∗ − f 0‖2. Thus, typically, the approximation error dominates the estimation error.
Applying random matrix theory, the design conditions are met with large probability when
X is a random matrix with independent rows from an appropriate distribution.

A bound for the approximation error ‖f ∗ − f 0‖2 can be established using convex analy-
sis. Here occurs a geometric quantity that can be thought of as an `1 version of canonical
correlation. We show in some examples that the obtained bound is tight.

Finally, we present some extensions to other norms and loss functions for non-Gaussian
models.
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